The $Q$-matrix problem for Markov chains

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Taylor Expansion for the Entropy Rate of Hidden Markov Chains

We study the entropy rate of a hidden Markov process, defined by observing the output of a symmetric channel whose input is a first order Markov process. Although this definition is very simple, obtaining the exact amount of entropy rate in calculation is an open problem. We introduce some probability matrices based on Markov chain's and channel's parameters. Then, we try to obtain an estimate ...

متن کامل

The Rate of Rényi Entropy for Irreducible Markov Chains

In this paper, we obtain the Rényi entropy rate for irreducible-aperiodic Markov chains with countable state space, using the theory of countable nonnegative matrices. We also obtain the bound for the rate of Rényi entropy of an irreducible Markov chain. Finally, we show that the bound for the Rényi entropy rate is the Shannon entropy rate.

متن کامل

The Q-matrix completion problem

Abstract. A real n × n matrix is a Q-matrix if for every k = 1, 2, . . . , n the sum of all k × k principal minors is positive. A digraph D is said to have Q-completion if every partial Q-matrix specifying D can be completed to a Q-matrix. For the Q-completion problem, sufficient conditions for a digraph to have Q-completion are given, necessary conditions for a digraph to have Q-completion are...

متن کامل

Graph Matching using Adjacency Matrix Markov Chains

This paper describes a spectral method for graph-matching. We adopt a graphical models viewpoint in which the graph adjacency matrix is taken to represent the transition probability matrix of a Markov chain. The nodeorder of the steady state random walk associated with this Markov chain is determined by the co-efficent order of the leading eigenvector of the adjacency matrix. We match nodes in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1975

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1975-13941-3